Notes of 2.4 (error analysis for iterative methods)

Def
p_{n} converges to p of order $\alpha>0$ with asymptotic error constant $\lambda>0$ if:
$\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{\alpha}}=\lambda$
(need $p_{n} \neq p$ for all n)
Def
if $\alpha=1$ and $\lambda<1$, then this is linearly convergent
if $\alpha=2$, this is quadratically convergent.

Theorem 2.8 (linear convergence of fixed point method)

If g is continuous on $[a, b], g^{\prime}$ continuous on $(a, b),\left|g^{\prime}(x)\right|<1$ on $(a, b), g^{\prime}(p) \neq 0$, then $p_{n}=$ $g\left(p_{n-1}\right)$ converges linearly to the unique fixed point in $[a, b]$
(unless I am mistaken, really we need to possibly shrink our interval to insure mapping properties).
proof
$\lim _{n \rightarrow \infty} \frac{p_{n+1}-p}{p_{n}-p}=\lim _{n \rightarrow \infty} \frac{g^{\prime}\left(\xi_{n}\right)\left(p_{n}-p\right)}{p_{n}-p}=\lim _{n \rightarrow \infty} g^{\prime}\left(\xi_{n}\right)=g^{\prime}(p)$
take absolute values of everything, get $\alpha=1, \lambda=g^{\prime}(p)$
Theorem 2.9 (quadratic convergence of fixed point method)
If $g(p)=p, g^{\prime}(p)=0,\left|g^{\prime \prime}(x)\right|<M$ around p, then if p_{0} is near p, then we get $\left|p_{n+1}-p\right|<$ $\frac{M}{2}\left|p_{n}-p\right|^{2}$

Proof.

Taylor expand around $p: g(x)=p+\frac{(x-p)^{2}}{2} g^{\prime \prime}(\xi)$
therefore $p_{n+1}=g\left(p_{n}\right)=p_{n}+\frac{g^{\prime \prime}(\xi)\left(p-p_{n}\right)^{2}}{2}$
therefore $p_{n+1}-p_{n}=\frac{g^{\prime \prime}(\xi)\left(x-p_{n}\right)^{2}}{2}$
therefore $\frac{\left|p_{n+1}-p_{n}\right|}{\left|p-p_{n}\right|^{2}}=\frac{\left|g^{\prime \prime}(\xi)\right|}{2} \rightarrow \frac{\left|g^{\prime \prime}(p)\right|}{2} \leq \frac{2}{M}$

Conclusion

Fixed points converge fast if $g^{\prime}(p)=0$

To find good fixed point

If we want to solve $f(x)=0$
we could let $g(x)=x-f(x)$, but a better one would be $g(x)=x-\phi(x) f(x)$ where $\phi(x)$ is some function such that $g^{\prime}(p)=0$.
after easy math, turns out $\phi(x)=1 / f^{\prime}(x)$ which is Newton's method.
Therefore:
Theorem. (Convergence of Newton's method)
Newton's method converges quadratically

Def (multiplicity of a root)
A root of f at p has multiplicity m if $f(x)=(x-p)^{m} q(x)$ with $\lim _{x \rightarrow p} q(x) \neq 0$ (basically you can factor $(x-p)^{m}$ out)

Criterion for multiplicity of a root.
if $f \in C^{k}([a, b])$ then $f^{(i)}(p)=0$ for $i=0, \ldots, k-1, f^{(k)}(p) \neq 0$ if and only if f has a zero of multiplicity k

